
1 Method of moving frame

Let Mn be a manifold with geometric structure. The method of moving
frame devised by E. Cartan consists of

(i) finding a natural frame θ = (θ1, · · · , θn) over M ,

(ii) expressing dθ in terms of θ,

(iii) finding a complete system of invariants.

Example 1.1 (Frenet frame for a curve in R3).
Let β(s) be a curve in R3 parameterized by arc length s. Let T = β′(s)
be a unit tangent vector. Then T ′(s) = k(s)N where N is a unit normal
vector to β. Assume k > 0 . Let B = T × N be the binormal vector.
Then B′ = −τN . We have the Frenet formula :











T ′ = kN,
N ′ = −kT + τB,
B′ = −τN.

A pair (T, N,B) is a moving frame along the curve β. We expressed
(T, N, B)′ in terms of (T, N, B) and obtained a complete system of in-
variants {k, τ}. Suppose there are two curves α(s) and β(s) in R3 which
are parameterized by arc length s. If kα = kβ and τα = τβ, then α and β
are congruent.

Let G be a Lie group and g the associated Lie algebra.

Definition 1.2. A Maurer-Cartan form is a g-valued 1-form ω which
satisfies the Maurer-Cartan equation :

dω = −1
2
[ω, ω],

that is, for any tangent vectors X and Y to G, dω(X, Y ) = −[ω(X), ω(Y )].
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In the cases that G is a Lie subgroup of Gl(n,R), let g : G ↪→ Gl(n,R)
be the inclusion map. Then η := g−1dg is a Maurer-Cartan form. It has
the following properties:

(i) η is a g-valued 1-form.
For g0 ∈ G and v ∈ Tg0G ,

η(v) = g−1
0 dg(v)

= g−1
0

d
dt

∣

∣

∣

t=0
g(α(t)) where α(0) = g0, α′(0) = v

=
d
dt

∣

∣

∣

t=0
g−1
0 g(α(t)) ∈ TeG = g.

(ii) η is left invariant.
For any a ∈ G,

L∗aη = (ag)−1d(ag)

= g−1a−1adg

= g−1dg

= η.

(iii) dη = −1
2 [η, η].

Since g−1g = I, (dg−1)g + g−1dg = 0. Thus d(g−1) = −g−1(dg)g−1.
Now,

dη = d(g−1) ∧ dg + g−1ddg

= −g−1dgg−1dg

= −η ∧ η.

In Rn, a frame is an ordered set of vectors

F = (x, e1, . . . , en),

where x ∈ Rn and ei’s are orthonormal tangent vectors at x. Such frames
form the group E(n) of Euclidean motions. E(n) is the set of all the
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matrices of the form












1 0 · · · 0
x1
... e1 · · · en

xn













=

[

1 0
x A

]

where tAA = I.

E(n) is a group since
[

1 0
x A

][

1 0
y B

]

=

[

1 0
x + Ay AB

]

,

[

1 0
x A

]−1

=

[

1 0
−tAx tA

]

.

Now compute the Maurer-Cartan form of E(n).
Let g : E(n) ↪→ Gl(n + 1,R) be the inclusion. Then we have

η = g−1dg

=

[

1 0
−tAx tA

] [

0 0
dx dA

]

=

[

0 0
tAdx tAdA

]

.

From the bundle point of view, π : E(n) → Rn given by (x, e1, · · · , en) 7→ x
gives a principal fibration :

E(n) π−→ E(n)/O(n) ≈ Rn

with structure group O(n). Let σ(x) = (x, e1, · · · , en) be an orthonormal
frame field. Pull back η by σ. Then we obtain

σ∗η =

[

0 0
θ ω

]

=













0 0 · · · 0
θ1
... ωi

j

θn













.
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In order to find θ and ω, we let A =
[

e1 · · · en

]

. Then tAdx = θ
and tAdA = ω. Observe that the Maurer-Cartan equation dη + η ∧ η = 0
implies

0 = σ∗(dη + η ∧ η)

= d(σ∗η) + σ∗η ∧ σ∗η

=

[

0 0
dθ dω

]

+

[

0 0
θ ω

]

∧

[

0 0
θ ω

]

=

[

0 0
dθ + ω ∧ θ dω + ω ∧ ω

]

.

Hence dθ + ω ∧ θ = 0 and dω + ω ∧ ω = 0.
In general, let G be a Lie group of Gl(n,R) and H a closed subgroup

of G. G may be regarded as the set of frames of G/H. Then the Maurer-
Cartan forms appear in the structure equations of a moving frame. The
Maurer-Cartan equations give a complete set of relations for the structure
equations of a moving frame. The question of describing the position of a
submanifold M ⊂ G/H may be thought of attaching to M a natural frame
or equivalently, a cross section of G → G/H over M. The Maurer-Cartan
form for G when restricted to the natural frame becomes a complete set
of invariants for M in G/H.

2 Local geometry of a submanifold Mm ⊂
RN

Choose a natural frame(adapted frame) of M , that is, an orthonormal
frame e1, . . . , em, em+1, . . . , eN where e1, . . . , em are tangent to M . Let
σ : M → E(N) be the map x 7→ (x, e1, . . . , eN).

Definition 2.1. Pull back by σ of the Maurer-Cartan form η of E(N) is
called the complete system of (local) invariants of M with respect
to the group of euclidean motions.
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Let M,M ′ be submanifolds of RN of dimension m. Let σ, σ′ be adapted
frames and (θ, ω), (θ′, ω′) the complete systems of local invariants of M
and M ′, respectively. Then M and M ′ are congruent if and only if there
exists ϕ : M → M ′ such that ϕ∗(θ′, ω′) = (θ, ω).

The previous example of Frenet frame is a special case :

k = ω1
2(T ), τ = ω2

3(T ).

Now we consider the existence and uniqueness of maps into Lie groups.
Let G be a Lie group with the Lie algebra g = TeG and let η be a g-valued
1-form on G such that

(i) ηe : g → g is the identity map,

(ii) L∗aη = η for all a ∈ G.

Such an η exists and is unique. If G ↪→ Gl(n,R), then η = g−1dg is such
a Maurer-Cartan form.

The following theorem is due to E. Cartan.

Theorem 2.2. Let N be a connected and simply connected manifold and
let γ be a smooth g-valued 1-form on N such that dγ = −1

2 [γ, γ]. Then,
there is a smooth map g : N → G which is unique up to composition with
a constant left multiplication so that g∗η = γ.

Proof. We assume that G and g are matrix groups. Let M = N ×G and
consider a 1-form θ = η − γ. Then we have

dθ = dη − dγ

= −η ∧ η + γ ∧ γ

= −(θ + γ) ∧ (θ + γ) + γ ∧ γ

= −θ ∧ (θ + γ)− γ ∧ θ.

We write θ = θ1x1 + · · · + θsxs where {x1, . . . , xs} is a basis of g and
θ1, . . . , θs are 1-forms on M . Then the algebraic ideal I =< θ1, . . . , θs >
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satisfies dI ⊂ I. Moreover, θ1, . . . , θs are linearly independent because
they restrict to each fibre {n}×G to be linearly independent. By Frobe-
nius theorem, M is foliated by maximal connected integral manifolds of
I, each of which projects onto N to be a covering map. Observe that
the foliation is invariant under Id × La : N × G → N × G since η is
left invariant. Since N is connected and simply connected, each inte-
gral leaf projects diffeomorphically onto N and hence the graph of a map
g : N → G.
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