1 Method of moving frame

Let M^{n} be a manifold with geometric structure. The method of moving frame devised by E. Cartan consists of
(i) finding a natural frame $\theta=\left(\theta^{1}, \cdots, \theta^{n}\right)$ over M,
(ii) expressing $d \theta$ in terms of θ,
(iii) finding a complete system of invariants.

Example 1.1 (Frenet frame for a curve in \mathbb{R}^{3}).

Let $\beta(s)$ be a curve in \mathbb{R}^{3} parameterized by arc length s. Let $T=\beta^{\prime}(s)$ be a unit tangent vector. Then $T^{\prime}(s)=k(s) N$ where N is a unit normal vector to β. Assume $k>0$. Let $B=T \times N$ be the binormal vector. Then $B^{\prime}=-\tau N$. We have the Frenet formula :

$$
\left\{\begin{array}{l}
T^{\prime}=k N \\
N^{\prime}=-k T+\tau B \\
B^{\prime}=-\tau N
\end{array}\right.
$$

A pair (T, N, B) is a moving frame along the curve β. We expressed $(T, N, B)^{\prime}$ in terms of (T, N, B) and obtained a complete system of invariants $\{k, \tau\}$. Suppose there are two curves $\alpha(s)$ and $\beta(s)$ in \mathbb{R}^{3} which are parameterized by arc length s. If $k_{\alpha}=k_{\beta}$ and $\tau_{\alpha}=\tau_{\beta}$, then α and β are congruent.

Let G be a Lie group and \mathfrak{g} the associated Lie algebra.
Definition 1.2. A Maurer-Cartan form is a \mathfrak{g}-valued 1-form ω which satisfies the Maurer-Cartan equation :

$$
d \omega=-\frac{1}{2}[\omega, \omega]
$$

that is, for any tangent vectors X and Y to $\mathrm{G}, d \omega(X, Y)=-[\omega(X), \omega(Y)]$.

In the cases that G is a Lie subgroup of $G l(n, \mathbb{R})$, let $g: G \hookrightarrow G l(n, \mathbb{R})$ be the inclusion map. Then $\eta:=g^{-1} d g$ is a Maurer-Cartan form. It has the following properties:
(i) η is a \mathfrak{g}-valued 1-form.

For $g_{0} \in G$ and $v \in T_{g_{0}} G$,

$$
\begin{aligned}
\eta(v) & =g_{0}^{-1} d g(v) \\
& =\left.g_{0}^{-1} \frac{d}{d t}\right|_{t=0} g(\alpha(t)) \quad \text { where } \alpha(0)=g_{0}, \alpha^{\prime}(0)=v \\
& =\left.\frac{d}{d t}\right|_{t=0} g_{0}^{-1} g(\alpha(t)) \in T_{e} G=\mathfrak{g} .
\end{aligned}
$$

(ii) η is left invariant.

For any $a \in G$,

$$
\begin{aligned}
L_{a}^{*} \eta & =(a g)^{-1} d(a g) \\
& =g^{-1} a^{-1} a d g \\
& =g^{-1} d g \\
& =\eta .
\end{aligned}
$$

(iii) $d \eta=-\frac{1}{2}[\eta, \eta]$.

Since $g^{-1} g=I,\left(d g^{-1}\right) g+g^{-1} d g=0$. Thus $d\left(g^{-1}\right)=-g^{-1}(d g) g^{-1}$. Now,

$$
\begin{aligned}
d \eta & =d\left(g^{-1}\right) \wedge d g+g^{-1} d d g \\
& =-g^{-1} d g g^{-1} d g \\
& =-\eta \wedge \eta
\end{aligned}
$$

In \mathbb{R}^{n}, a frame is an ordered set of vectors

$$
F=\left(x, e_{1}, \ldots, e_{n}\right),
$$

where $x \in \mathbb{R}^{n}$ and e_{i} 's are orthonormal tangent vectors at x. Such frames form the group $E(n)$ of Euclidean motions. $E(n)$ is the set of all the
matrices of the form

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
x_{1} & & & \\
\vdots & e_{1} & \cdots & e_{n} \\
x_{n} & & &
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
x & A
\end{array}\right] \quad \text { where }{ }^{t} A A=I
$$

$E(n)$ is a group since

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 0 \\
x & A
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
y & B
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
x+A y & A B
\end{array}\right],} \\
{\left[\begin{array}{ll}
1 & 0 \\
x & A
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-{ }^{t} A x & { }^{t} A
\end{array}\right]}
\end{gathered}
$$

Now compute the Maurer-Cartan form of $E(n)$.
Let $g: E(n) \hookrightarrow G l(n+1, \mathbb{R})$ be the inclusion. Then we have

$$
\begin{aligned}
\eta & =g^{-1} d g \\
& =\left[\begin{array}{cc}
1 & 0 \\
-{ }^{t} A x & { }^{t} A
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
d x & d A
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 0 \\
{ }^{t} A d x & { }^{t} A d A
\end{array}\right] .
\end{aligned}
$$

From the bundle point of view, $\pi: E(n) \rightarrow \mathbb{R}^{n}$ given by $\left(x, e_{1}, \cdots, e_{n}\right) \mapsto x$ gives a principal fibration :

$$
E(n) \xrightarrow{\pi} E(n) / O(n) \approx \mathbb{R}^{n}
$$

with structure group $O(n)$. Let $\sigma(x)=\left(x, e_{1}, \cdots, e_{n}\right)$ be an orthonormal frame field. Pull back η by σ. Then we obtain

$$
\sigma^{*} \eta=\left[\begin{array}{cc}
0 & 0 \\
\theta & \omega
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
\theta_{1} & & & \\
\vdots & & \omega_{j}^{i} & \\
\theta_{n} & & &
\end{array}\right]
$$

In order to find θ and ω, we let $A=\left[\begin{array}{lll}e_{1} & \cdots & e_{n}\end{array}\right]$. Then ${ }^{t} A d x=\theta$ and ${ }^{t} A d A=\omega$. Observe that the Maurer-Cartan equation $d \eta+\eta \wedge \eta=0$ implies

$$
\begin{aligned}
0 & =\sigma^{*}(d \eta+\eta \wedge \eta) \\
& =d\left(\sigma^{*} \eta\right)+\sigma^{*} \eta \wedge \sigma^{*} \eta \\
& =\left[\begin{array}{cc}
0 & 0 \\
d \theta & d \omega
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
\theta & \omega
\end{array}\right] \wedge\left[\begin{array}{ll}
0 & 0 \\
\theta & \omega
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 0 \\
d \theta+\omega \wedge \theta & d \omega+\omega \wedge \omega
\end{array}\right]
\end{aligned}
$$

Hence $d \theta+\omega \wedge \theta=0$ and $d \omega+\omega \wedge \omega=0$.
In general, let G be a Lie group of $G l(n, \mathbb{R})$ and H a closed subgroup of G. G may be regarded as the set of frames of G / H. Then the MaurerCartan forms appear in the structure equations of a moving frame. The Maurer-Cartan equations give a complete set of relations for the structure equations of a moving frame. The question of describing the position of a submanifold $M \subset G / H$ may be thought of attaching to M a natural frame or equivalently, a cross section of $G \rightarrow G / H$ over M. The Maurer-Cartan form for G when restricted to the natural frame becomes a complete set of invariants for M in G / H.

2 Local geometry of a submanifold $M^{m} \subset$ \mathbb{R}^{N}

Choose a natural frame(adapted frame) of M, that is, an orthonormal frame $e_{1}, \ldots, e_{m}, e_{m+1}, \ldots, e_{N}$ where e_{1}, \ldots, e_{m} are tangent to M. Let $\sigma: M \rightarrow E(N)$ be the map $x \mapsto\left(x, e_{1}, \ldots, e_{N}\right)$.

Definition 2.1. Pull back by σ of the Maurer-Cartan form η of $E(N)$ is called the complete system of (local) invariants of M with respect to the group of euclidean motions.

Let M, M^{\prime} be submanifolds of \mathbb{R}^{N} of dimension m. Let σ, σ^{\prime} be adapted frames and $(\theta, \omega),\left(\theta^{\prime}, \omega^{\prime}\right)$ the complete systems of local invariants of M and M^{\prime}, respectively. Then M and M^{\prime} are congruent if and only if there exists $\varphi: M \rightarrow M^{\prime}$ such that $\varphi^{*}\left(\theta^{\prime}, \omega^{\prime}\right)=(\theta, \omega)$.

The previous example of Frenet frame is a special case :

$$
k=\omega_{2}^{1}(T), \quad \tau=\omega_{3}^{2}(T)
$$

Now we consider the existence and uniqueness of maps into Lie groups. Let G be a Lie group with the Lie algebra $\mathfrak{g}=T_{e} G$ and let η be a \mathfrak{g}-valued 1-form on G such that
(i) $\eta_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$ is the identity map,
(ii) $L_{a}^{*} \eta=\eta \quad$ for all $a \in G$.

Such an η exists and is unique. If $G \hookrightarrow G l(n, \mathbb{R})$, then $\eta=g^{-1} d g$ is such a Maurer-Cartan form.

The following theorem is due to E. Cartan.
Theorem 2.2. Let N be a connected and simply connected manifold and let γ be a smooth \mathfrak{g}-valued 1 -form on N such that $d \gamma=-\frac{1}{2}[\gamma, \gamma]$. Then, there is a smooth map $g: N \rightarrow G$ which is unique up to composition with a constant left multiplication so that $g^{*} \eta=\gamma$.

Proof. We assume that G and \mathfrak{g} are matrix groups. Let $M=N \times G$ and consider a 1 -form $\theta=\eta-\gamma$. Then we have

$$
\begin{aligned}
d \theta & =d \eta-d \gamma \\
& =-\eta \wedge \eta+\gamma \wedge \gamma \\
& =-(\theta+\gamma) \wedge(\theta+\gamma)+\gamma \wedge \gamma \\
& =-\theta \wedge(\theta+\gamma)-\gamma \wedge \theta .
\end{aligned}
$$

We write $\theta=\theta^{1} x_{1}+\cdots+\theta^{s} x_{s}$ where $\left\{x_{1}, \ldots, x_{s}\right\}$ is a basis of \mathfrak{g} and $\theta^{1}, \ldots, \theta^{s}$ are 1 -forms on M. Then the algebraic ideal $I=<\theta^{1}, \ldots, \theta^{s}>$
satisfies $d I \subset I$. Moreover, $\theta^{1}, \ldots, \theta^{s}$ are linearly independent because they restrict to each fibre $\{n\} \times G$ to be linearly independent. By Frobenius theorem, M is foliated by maximal connected integral manifolds of I, each of which projects onto N to be a covering map. Observe that the foliation is invariant under $I d \times L_{a}: N \times G \rightarrow N \times G$ since η is left invariant. Since N is connected and simply connected, each integral leaf projects diffeomorphically onto N and hence the graph of a map $g: N \rightarrow G$.

References

[1] R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior differential systems (1991), Springer-Verlag, New York, Berlin, Heidelberg.
[2] R. Bryant, P. Griffiths and D. Yang, Characteristics and existence of isometric embeddings, Duke Math. J. 50 (1983), 893-994.

